動的計画法 (1)

京都大学防災研究所
総合防災研究部門
多々納裕一
動的計画法とは

- Dynamic Programming
 - Belman
- 段階を踏んで最適解を求める: 多段階決定法
 - 目的関数は非凸でもよい。
- 最適性の原理」を用いる。
Example: Allocation Problem

\[
\begin{align*}
&\text{max} \quad g_1(x_1) + g_2(x_2) + g_3(x_3) \\
&\text{subject to} \\
&x_1 + x_2 + x_3 = 4 \\
&x_1 \geq 0, x_2 \geq 0, x_3 \geq 0,
\end{align*}
\]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_1(x_1))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_2)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_2(x_2))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_3)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_3(x_3))</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
解へのアプローチ

目的：
\[
\max_{x_1 + x_2 + x_3 = 4, \quad x_1 \geq 0, x_2 \geq 0, x_3 \geq 0} \quad g_1(x_1) + g_2(x_2) + g_3(x_3)
\]
を満たす配分 \(x_1^*, x_2^*, x_3^* \) を求める。

工場 3への配分量をと \(x_3 \) すると、残り \(4-x_3 \) を工場 1、2に利益を最大化して得られる利益全体は以下のようになる。

\[
\max_{x_1 + x_2 = 4-x_3, \quad x_1 \geq 0, x_2 \geq 0} \quad \{g_1(x_1) + g_2(x_2)\} + g_3(x_3)
\]
これが、最大となるような \(x_3 \) が工場 3への最適な配分量だから、次の関係が成り立つ。

\[
g_1(x_1^*) + g_2(x_2^*) + g_3(x_3^*) = \max_{0 \leq x_3 \leq 4} \max_{x_1 + x_2 = 4-x_3, \quad x_1 \geq 0, x_2 \geq 0} \{g_1(x_1) + g_2(x_2)\} + g_3(x_3)
\]
したがって、はじめに

\[
\max_{x_1+x_2=4-x_3, \quad x_1 \geq 0, x_2 \geq 0} \{g_1(x_1) + g_2(x_2)\}
\]

を解けばよい。いま、\(s_2 = 4 - x_3 \) とおくと

\[
f_2(s_2) = \max_{x_1+x_2=s_2, \quad x_1\geq 0, x_2 \geq 0} \{g_1(x_1) + g_2(x_2)\} = \max_{0 \leq x_2 \leq s_2} \{g_1(s_2 - x_2) + g_2(x_2)\}
\]

各 \(s_2 (= 0, 1, 2, 3, 4) \) を定めれば、\(x_2 \) に関する1変数の最適化問題。容易に解ける！！

\[
f_2(s_2) \text{ が求まれば、} s_2 = 4 - x_3 \text{ より}
\]

\[
\max_{x_1+x_2+x_3=4, \quad x_1 \geq 0, x_2 \geq 0} \{g_1(x_1) + g_2(x_2) + g_3(x_3)\} = \max_{0 \leq x_3 \leq 4} \{f_2(s_2 - x_3) + g_3(x_3)\}
\]

1変数の最適化問題。容易に解ける！！
解法のまとめ

\begin{align*}
f_1(s_1) &= g_1(s_1) \\
f_2(s_2) &= \max_{0 \leq x_2 \leq s_2} \{ f_1(s_2 - x_2) + g_2(x_2) \} \\
f_3(s_3) &= \max_{0 \leq x_2 \leq s_3} \{ f_1(s_3 - x_3) + g_3(x_3) \}
\end{align*}

として、最後に、\(f_3(4) \) を求めればよい。

多変数の最適化問題を複数の1変数の最適化問題に変換して解いていく。
解答

Stage(1)

\[f_1(s_1) = g_1(s_1) = \begin{cases}
0 & (s_1 = 0) \\
1 & (s_1 = 1) \\
2 & (s_1 = 2) \\
3 & (s_1 = 3) \\
4 & (s_1 = 4)
\end{cases} \]
解答 (続き)

Stage(2)

\[f_2(s_2) = \max_{0 \leq x_2 \leq s_2} \{ f_1(s_2 - x_2) + g_2(x_2) \} \]

1) \(s_2 = 0 \)のとき

\[f_2(0) = f_1(0 - 0) + g_2(0) = 0 \]

2) \(s_2 = 1 \)のとき

\[f_2(1) = \max_{0 \leq x_2 \leq 1} \{ f_1(1 - x_2) + g_2(x_2) \} \]

\[= \max \begin{cases} 1+0 & (x_2 = 0) \\ 0+1 & (x_2 = 1) \end{cases} = 1 \]

3) \(s_2 = 2 \)のとき

\[f_2(2) = \max_{0 \leq x_2 \leq 1} \{ f_1(2 - x_2) + g_2(x_2) \} \]

\[= \max \begin{cases} 2+0 & (x_2 = 0) \\ 1+1 & (x_2 = 1) \\ 0+4 & (x_2 = 2) \end{cases} = 4 \]

4) \(s_2 = 3 \)のとき

\[f_2(3) = \max_{0 \leq x_2 \leq 1} \{ f_1(3 - x_2) + g_2(x_2) \} \]

\[= \max \begin{cases} 3+0 & (x_2 = 0) \\ 2+1 & (x_2 = 1) \\ 1+4 & (x_2 = 2) \\ 0+9 & (x_2 = 3) \end{cases} = 9 \]

5) \(s_2 = 4 \)のとき

\[f_2(4) = \max_{0 \leq x_2 \leq 1} \{ f_1(4 - x_2) + g_2(x_2) \} \]

\[= \max \begin{cases} 4+0 & (x_2 = 0) \\ 3+1 & (x_2 = 1) \\ 2+4 & (x_2 = 2) \\ 1+9 & (x_2 = 3) \\ 0+10 & (x_2 = 4) \end{cases} = 10 \]
解答 (続き)

Stage(3)

\[f_3(4) = \max_{0 \leq x_3 \leq 4} \{ f_2(4 - x_3) + g_3(x_3) \} \]

\[
= \max \begin{cases}
10 + 0 & (x_3 = 0) \\
9 + 4 & (x_3 = 1) \\
4 + 7 & (x_3 = 2) = 13 \\
1 + 9 & (x_3 = 3) \\
0 + 10 & (x_3 = 4)
\end{cases}
\]

したがって、\(x_3^* = 1 \) です。この時、\(x_2^* = 3, x_1^* = 0 \) であり、
目的関数値は15となる。
一般的な資源配分問題のDP解法

\[
\begin{align*}
 f_1(s_1) &= g_1(s_1) \\
 f_n(s_n) &= \max_{x_1 + x_2 \cdots + x_n = s_n} \{g_1(x_1) + g_2(x_2) + \cdots + g_n(x_n)\} \\
 n &= 2, 3, \cdots; N
\end{align*}
\]

但し、\(s_N = C \)

とおくと次式が成立する

\[
 f_n(s_n) = \max_{0 \leq x_n \leq s_n} \{g_n(x_n) + f_{n-1}(s_n - x_n)\}
\]

最適解を求める手順

（1） \(f_1(s_1) = g_1(s_1) \)

\[
 f_n(s_n) = \max_{0 \leq x_n \leq s_n} \{g_n(s_n) + f_{n-1}(s_n - x_n)\} \quad n = 2, 3, \cdots; N
\]

とおく
一般的なDPの解法（続き）

(2) \(f_n(s_n) = \max_{0 \leq x_n \leq s_n} \{ g_n(x_n) + f_{n-1}(s_n - x_n) \} \)

において，\(x \)を固定し，\(x_2 \)の1変数関数

\(g_2(x_2) + f_1(s_2 - x_2) \)

の最大値を求める．

\(x_2 \)は\(x \)に依存するので，\(x_2 = x_2(x) \)と書く．

(3) (2)を\(n = N - 1 \)まで繰り返す．\(f_{N-1}(x) \)を用いて

\(f_N(c) = \max_{0 \leq x_N \leq c} \{ g_N(x_N) + f_{N-1}(c - x_N) \} \)

より，\(f_N(c) \)と\(x_N \)を求める．これを\(x^*_N \)とする．
一般的なDPの解法 (続き)

(4) \(c - x_N^* \) より, \(x_{N-1}^* = x_{N-1}^*(c - x_N^*) \) を求める.
\[c - x_N^* - x_{N-1}^* \] より, \(x_{N-2}^* = x_{N-1}^*(c - x_N^* - x_{N-1}^*) \) を求める。
同様にして \(x_1^* \cdots x_N^* \) を得る。
最大利益は \(f_N(C) \)
最適性の原理

最初の状態と最初の決定がどのようなものであっても、残りの決定は最初の決定から生じた状態に対して最適なものでなければならない。
前進型 DP

状態の推移則
決定変数の許容域
最適値関数

\[
s_{n-1} = T(s_n, x_n, n),
\]

\[
x_n \in \Omega(s_n)
\]

\[
f_n(s_n) = \max_{x_n \in \Omega(s_n)} \{ g_n(x_n) + f_{n-1}(T(s_n, x_n, n)) \}
\]

関数漸化式

後進型 DP

状態の推移則
決定変数の許容域
最適値関数

\[
s_{n+1} = T(s_n, x_n, n),
\]

\[
x_n \in \Omega(s_n)
\]

\[
f_n(s_n) = \max_{x_n \in \Omega(s_n)} \{ g_n(x_n) + f_{n+1}(T(s_n, x_n, n)) \}
\]

関数漸化式
例題 2.7

ステージ: 活動 n

状態: その後のステージ以降で利用可能な水量 C_n

決定変数: 各ステージでの使用水量 x_n

状態推移則: $C_{n-1} = C_n - x_n$

$x_3 \geq 2$
$x_2 \geq 2$
$x_1 \geq 2$

$c_3 = 10$
$c_2 = c_1 - x_1$
$c_1 = c_2 - x_2$
例題 2.7

最適値関数：活動 1 - nまでで生み出される利益

\[f_n(c_n) = \max \{ g_1(x_1) + \cdots + g_{n-1}(x_{n-1}) + g_n(x_n) \} \]

\[x_1 + \cdots + x_n = c_n, \]
\[x_1, \cdots, x_n \geq 2 \]

決定変数の許容域

\[\Omega_n(c_n) = \{ x \mid 2 \leq x \leq c_n - 2(n-1) \} \]

関数漸化式は

\[f_n(c_n) = \max_{x_n \in \Omega(c_n)} \{ g_n(x_n) + f_{n-1}(c_n - x_n) \} \]

このように定式化してしまえば、後は解くだけ！！
最短経路問題

例

ノード1から7までの最短経路を求めよ
解

1. ノードm (i 場合)からノード7までの最小時間 (Dijkstraに相当)
2. \(f(m) \); ノードmからノードnまでの所要時間 (mとnは隣接) (g(x_n)に相当)

\[f(m) = \min [t_{mn} + f(n)] \]
解 (続き)

\[
f(6) = t_{67} = 4
\]
\[
f(5) = \min[t_{56} + f(6), t_{57}] = \min[2 + 4, 7] = 6
\]
\[
f(4) = \min[t_{45} + f(5), t_{47}] = \min[1 + 6, 6] = 6
\]
\[
f(3) = t_{35} + f(5) = 10
\]
\[
f(2) = \min[t_{24} + f(4), t_{25} + f(5)] = \min[4 + 6, 2 + 6] = 8
\]
\[
f(1) = \min[t_{12} + f(2), t_{13} + f(3)] = \min[3 + 8, 2 + 10] = 11
\]

よって、最短経路は、1 2 5 6 7 となる。
定石

最適配分問題 (前進型)
- ステージ: 活動
- 状態変数: (そのステージを含む) それまでの活動で利用可能な資源量
- 最適値関数: それまでの活動で達成可能な利潤の最大値 (または、費用の最小値)

最短経路問題
- ステージ: なし (または、ノードと考えてもよい)
- 状態変数: ノード
- 最適値関数: そのノードから、最終のノードまでの最短所用時間